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Chapter 6
The Inverse Problem: Using Spectral
Theory to Recover the Atmospheric

Refractivity Profile

6.1 Introduction

Throughout Chapter 5 we mostly were concerned with the use of a full
spectral representation of the electromagnetic field. We are not unmindful,
however, of the potential suitability of this particular spectral technique to the
inverse problem: determining the bending angle and refractivity profiles from a
time-sequence of measurements of amplitude and phase of the received signal.
This is especially interesting when adverse signal conditions prevail, that is,
when the received signal exhibits significant amplitude and phase interference
from multiple rays. In these situations classical recovery algorithms, such as
those using the excess Doppler with the Abel transform, can run into difficulty
because of the non-uniqueness or even non-existence of the ray path. Caustic
points also lead to a breakdown in the validity of geometric optics, i.e., second
order ray theory, on which the Abel transform algorithm is based. Spectral
techniques, whether they rooted in geometric optics or in a full spectrum wave
theory, can deal with these types of propagation problems. Although multiple
rays with different bending angles can arrive at the LEO at the same time, they
can not arrive simultaneously with the same excess Doppler values when
spherical symmetry applies; those must be distinct. The transformation of the
time series of observations into a spectral series provides a means to uniquely
recover bending angle and refractivity profiles because of this one-to-one
relationship between bending angle and excess Doppler.

In this chapter we briefly outline the use of the particular full spectrum
wave theory technique developed in Chapter 5 for the inverse problem. The
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spectral density function G[ , ]ρ ν , which is the extra phase delay at the radial
position ρ  induced by the refractivity gradient on the ν th  spectral component
of the wave, plays a central role. We will not discuss in detail the computational
aspects using this particular spectral technique, nor the concomitant use of
estimation theory techniques on noisy data.

We assume that the LEO has received an ordered time series of amplitude
and phase measurements, appropriately stripped of the geometric LEO/GPS
Doppler signature and any other contributory error sources. For example, we
assume perfect orbit knowledge from POD. We assume that the effects of
oscillator variations in the various clocks affecting the phase measurements
have been eliminated through redundant differential tracking; and we assume
that ionospheric effects can be eliminated through dualband L1 and L2
tracking, possibly supplemented with modeling to eliminate third order effects.
We also assume that the SNR of the signal is sufficient so that a Nyquist
sample rate is practicable with respect to the bandwidth of the particular
atmospheric signature under study.

Although this chapter does discuss a stand-alone Fourier approach for the
inverse problem with radio occultation data, we note again that a principal
utility of radio occultation data is for meteorology and numerical weather
prediction. There the occultation data are merged in a timely way into a much
richer and broader multi-sensor data base, which is constrained by a
comprehensive model that characterizes the atmosphere and controls
atmospheric processes. This is already mentioned in Chapter 1. In this context
the difference between an actual radio occultation observation and a predicted
observation obtained by forward propagation of the GPS signal through the
atmospheric model becomes a constraint among the free parameters of the
model. The 4DVAR methodology for minimizing a quadratic cost function
involving disparate competing data bases constrained by the model is central to
accurate weather prediction [1]. In this application one usually would not
recover the refractivity profile from a radio occultation profile alone, but only
from within the 4DVAR context. Nevertheless, the stand-alone approach has
some important uses, and it is discussed in the next sections.

6.2 GPS Receiver Operations

It is helpful to understand some basic operational aspects of the GPS
receiver in measuring phase and amplitude. The BlackJack GPS receiver series
is a modern, high accuracy, dualband, digital receiver developed by JPL for
scientific applications in space. As its development has evolved over the past
several years it has successfully flown on over 1/2 dozen Earth satellites for
navigation and time keeping, precision orbit determination, geopotential
mapping, ocean reflections and limb sounding [2].



The Inverse Problem 469

The following is a rather high level account of this particular receiver. It
omits important details, which are crucial to the actual recovery of atmospheric
parameters, but which are less relevant to the discussion here, e.g., dual
frequency tracking to remove ionosphere effects, dealing with clock errors,
digital signal processing and correlation operations on noisy data [3,4].

In normal operations the BlackJack receiver uses a closed-loop phase
model before extracting the phase delay information to reduce the frequency of
the received RF signal from the GPS satellite to baseband, a few tens of Hertz.
First, the received RF signal (carriers in the 1.2–1.6 GHz range) is 1-bit digital
sampled in-phase and separately in-quadrature, that is, with the received RF
phase shifted by 90 deg. To facilitate the signal processing by the receiver, the
data rate of these two parallel bit streams is reduced to an intermediate
frequency (IF) of around 200 KHz. The IF frequency of these bit streams is
then further reduced to the baseband frequency using an in-receiver phase
model. This model is generated from a cubic polynomial fit to previous phase
measurements made by the receiver over the past few tens of milliseconds, and
in the closed-loop mode it is updated after each observational epoch with the
latest phase measurement [Chk w. Meehan xx].

The L1 (1575 MHz) and L2 (1226 MHz) carriers of the navigation signals
from each GPS satellite are derived from the same onboard master oscillator,
and therefore, they are initially coherent. The L1 carrier is phase-modulated
coherently with the C/A and P ranging codes. The L2 carrier is
phase-modulated only with the P-code, but coherently with the L1. These
ranging codes are pseudorandom, phase-modulating square waves that fully
suppress the carrier tone. Each transition of a code, occurring at a frequency or
chip rate of 1.023 MHz for the C/A code and at 10.23 MHz for the P code,
involves a change in phase of the carrier of either zero or 180 deg in accordance
with the pseudorandom algorithm specific to that particular code. Both carriers
also are phase-modulated with a header code operated at a 50 Hz chip rate. This
very low rate code carries the almanac and timing information for the tracked
satellite and other satellite health and housekeeping data. Each satellite
broadcasts distinctive codes that are unique to that satellite. These codes are
mutually orthogonal and they also are orthogonal between GPS satellites. In the
limit, cross-correlating two different codes yields a null result. Moreover,
because the codes are pseudorandom, their auto-correlation function is
triangular across an alignment offset of up to ±1 chip period, and its value is
zero outside of this range. This means that multiplying the same code with itself
but time-shifted also yields a null result unless the two components are aligned
within ±1 chip period, the spatial equivalent of about ±30  m for the P-code.
Therefore, cross-correlating the received signal from a specific GPS satellite
with the appropriately time and Doppler-shifted C/A and P-code replicas
effectively filters out the signals received from all other satellites and also
signals with phase delays greater than the chip period. Also, by aligning the
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codes it enables a determination of the propagation delay between that satellite
and the receiver plus any time-keeping difference between their clocks.

The baseband signal embedded in the in-phase and the quadrature bit
streams being processed by the receiver is a composite of all broadcasting GPS
satellites in view of the receiver’s antennas. Also, the sign of each bit, +1 or –1,
is dominated by the inevitable thermal or SNR noise on the original RF
sampling process. Each of these bi-level bit streams is multiplied on a bit-by-bit
basis by the time-delayed and Doppler-shifted baseband replica of the actual
signal broadcast from a specific GPS satellite. These products are then averaged
over a given time interval, i.e., they are cross-correlated. The nominal
averaging time for this cross-correlation is 20 milliseconds. The receiver can
perform this operation in parallel on the dualband L1 and L2 signals from up to
a dozen individual GPS satellites. The cross-correlation operation accomplishes
three objectives. First, the signals from all other satellites are essentially filtered
out. Second, when the time-delayed and Doppler-shifted baseband replica is
aligned with the arriving signal from that specific satellite, the effective SNR
noise on the correlation products for that satellite is averaged down. Third, the
alignment returning the maximum value of the correlation product provides the
difference of the reception epoch of the receiver clock minus the transmission
epoch of the clock onboard the GPS satellite. Synchronizing the transmitter and
receiver clocks then allows the propagation delay, or group delay, from that
satellite to the receiver to be obtained. Clock synchronization is achieved
through redundant concurrent tracking of selected GPS satellites, including the
occulted satellite, from the LEO receiver and from ground station receivers.
Concurrent tracking of multiple GPS satellites from multiple receivers allows
determination of the clock epoch differences. This cross-correlation between
the received signal and its replica from a given satellite is performed on the
in-phase bit stream and also separately on the quadrature bit stream. Thus, on
each bit stream the signal is averaged over 20,000 transition points or chip
periods of the C/A code and 200,000 chip periods of the P code. The noise error
in the average is inversely proportional to the square root of the averaging
interval.

The propagation delay between the broadcasting GPS satellite and the
receiver may be determined in two ways. The alignment of the bit streams, so
that the autocorrelation function described above from the received and replica
codes is maximized, yields the group delay plus SNR error. After the
autocorrelation function is maximized, a far more precise determination of
propagation delay is obtained from the measurement of the phase of the carrier
itself, which has a wavelength of only about 20 cm; in comparison, the
“wavelength” of the P-code is about 30 m. This propagation delay of the carrier
phase is obtained from the two time-averaged correlation coefficients, the
in-phase coefficient I and the quadrature coefficient Q. The arctangent of I
divided by Q gives a measurement of the difference in true phase minus the
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phase predicted from the in-receiver model, modulo 2π 1. If no cycles are lost
between the epochs of the current measurement and the immediate previous
measurement 20 msec earlier, adding the predicted phase from the model to the
measured phase difference gives the true phase plus the averaged-down SNR
error at that observation epoch. An important property of this scheme (adding
the predicted phase to the measured difference) is that the SNR measurement
error of the true phase at each observation epoch is statistically independent of
the SNR error at any other epoch. The root-sum-square of the in-phase and
quadrature correlation coefficients gives the amplitude of the signal. The SNR
error on the phase measurement is statistically uncorrelated with the SNR error
on the amplitude measurement. These measurements of true phase and
amplitude are then reported by the receiver at a sample rate of nominally 20 ms;
this is a convenient reporting rate because of the 50 Hz header code. Other
multiples of that canonical sample interval can be used.

This closed-loop correlation and reporting scheme for the phase works well
when the RMS difference between the predicted and measured phase is small,
substantially less than 1/4 cycle. In this case there is a very high probability that
no complete cycles, of either a positive or negative integer number, have been
unaccounted for between the two successive measurement epochs. Using
Gaussian statistics it is easy to show why this is so. Suppose that the measured
phase at a particular epoch differed from the predicted value by exactly
1/2 cycle. Then we would have no way of determining whether that
measurement was a cycle above or a cycle below the predicted value; all cycles
look alike. Regarding this measured 1/2 cycle difference, do we add it to or
subtract it from the predicted phase given by the model? Suppose that the
statistical difference between measured and predicted phase, arising from either
SNR errors or from unknown phase acceleration or from both, turns out to be
1/4 cycle, 1−σ . Then the probability of getting less than 1/2 cycle difference at

each measurement epoch, if the errors are Gaussian distributed, is Erf / /2 21 2[ ],
or 0.9545. It follows that the probability of having at least one difference that is
greater than 1/2 cycle after n successive statistically independent samples is

                                                  
1 In early versions of the Blackjack receiver, a simpler 2-quadrant arctangent routine
without complete 4-quadrant resolution was used on the I and Q correlation coefficients
to extract phase. This design choice eliminated the requirement to determine during the
signal processing the sign of the 50 Hz header code bit ±1. An error in sign affects the
sign of the I and Q correlation products the same way, and cancels in their ratio. But,
this results in a 1/2-cycle ambiguity. This exacerbates the cycle slipping problem in
noisy and/or loop-stressed conditions. Unfortunately, this arctangent operation has
resided in the digital signal processing firmware (the ASIC) of the receiver, which is
not easily modified without incurring the expense of redesigning and fabricating the
ASIC at a silicon foundry. BlackJack designers at JPL plan to incorporate a 4-quadrant
discriminator in a future version. The discussion here assumes the 4-quadrant version.
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1 0 9545− . n . After 1 s of elapsed time at a rate of 1 sample per 20 ms, n = 50 ;
therefore, for σ =1 4/  cycle, the probability of getting at least one phase
difference greater than 1/2 cycle in 50 trials is virtually certain. If at a given
measurement epoch the measured phase difference is 1/2 cycle, then there is at
least a 50% chance of choosing the wrong integer for the cumulative cycle
count. Therefore, for σ =1 4/  cycle, a non-zero integer number of cycle slips
becomes virtually certain within 1 s with a 20 ms sample interval. On the other
hand, suppose the 1−σ  value of the statistical difference between the measured
and predicted phase is 1/8 cycle. Then the probability of getting one or more
phase differences that are greater than 1/2 cycle in n successive samples is

1 4 21 2− [ ]Erf / / n
= −1 0 9968. n , still nearly zero for n = 50 . In good signal

conditions with small differences between measured and predicted phase, this
scheme (of adding the predicted phase to the measured difference modulo 2π )
usually works well.

6.2.1 Adverse Signal Conditions

The problem arises in adverse signal conditions, for example, when more
than one ray arrives concurrently at the LEO, leading to interference and to
sharp accelerations in phase across the troughs in the amplitude scintillation.
Another adverse condition is where the LEO enters a quasi-shadow zone where
no rays or at most highly defocused rays are present. Interference scenarios
have been described earlier in Figs. 5-19 to 5-34. Figure 5-34 shows a specific
example of fringe frequencies of roughly 50 Hz, 1 cycle change over 20 ms.
Reducing the refractivity gradient in this model by a factor of four to obtain
more realistic conditions, that is, that are more closely aligned with the Earth’s
atmosphere, quadruples the length of time. Thus, 1/4 cycle change occurs for
this relaxed case in 20 ms, which still a potential problem for closed-loop
operations. This level of phase acceleration is serious enough to cause with
some probability on each correlation interval at least one cycle not to be
properly added or subtracted from the integer count book-kept by the
in-receiver phase model. Over the many successive 20 ms sample intervals
spanning a few seconds this could amount to a significant number of
systematically lost cycles.

Consider the Gaussian refractivity model used in Fig. 5-20 and also the
composite Gaussian/exponential model in Fig. 5-26. For a Gaussian distribution
the impact parameter separations between rays in the multipath zone scale
roughly linearly with the 1−σ  width HW  of the distribution, but the width of

the multipath zone (in θL  or in elapsed time) scales roughly as HW
/−3 2 . The

separations between rays scale only weakly with NW , but the width of the zone
scales nearly linearly with NW . For the impact parameter diagram shown in
Fig. 5-20 the values used are NW .= 0 0001 and HW . km=1 6 , which results in
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impact parameter separations of roughly 10 km, rather large compared to
realistic scenarios. But, in Fig. 5-26 the values used in the Gaussian component
are NW .= 0 00005  and HW m= 350 , corresponding to a peak water vapor
number density of about 1% of the local dry air density. More importantly, for
Fig. 5-26 this component is superimposed on a background refracting medium
that is defocusing, an exponential profile corresponding to dry air. This
composite model leads to impact parameter separations in the multipath zone of
up to 3 km, or to excess Doppler differences of up to about 15 Hz, or 1/3 cycle
in 20 ms.

Another adverse signal situation occurs when the LEO encounters a shadow
zone with weak signal conditions followed by flaring and strong interference.
Consider a local refracting medium (e.g., a water vapor layer) embedded in an
ambient medium (e.g., dry air) that gives rise to the transient in Fig. 6-1, which
shows bending angle versus impact parameter. An abrupt increase in
refractivity below a spherical boundary could yield this form for the bending
angle profile. Here ρo o ok N r= +( )1  corresponds to sea level. No  is the

refractivity for dry air at sea level. The exponential model in Eq. (5.8-2a) is
used here for the dry air component of the refractivity with No = 0 00027.  and

the scale height Hk− =1 7 km . Below the boundary at r Hko +
−1 4/ , about 2 km

above sea level, the total refractivity abruptly increases, but then with
decreasing altitude its gradient gradually approaches the dry air gradient.
Figure 6-7 shows the recovered refractivity profile for this water vapor layer.

The impact parameter diagram shown in Fig. 6-2 results from the same
bending angle profile shown in Fig. 6-1. The values of the refractivity and orbit
parameters are the same for Figs. 6-1 through 6-7. The LEO orbit radius is
r roL
= 1 1. . This figure, expressed in terms of impact parameter altitude in

kilometers versus orbit angle, provides an example of a shadow zone (where
d dρ θ* / L ≈ 0 ) followed by caustic flaring and multipath. At r r H ko≈ + / 4  the
main ray (m) encounters a sharp increase in refractivity as its tangency point
descends below a boundary there. This causes a shadow zone. As θL  further
decreases the first caustic is encountered at θ θρL − ≈

o
2 , leading to the creation

of two more rays (a) and (b) in addition to the main ray (m). For a coplanar
geometry the Doppler difference between these new rays and the (m) ray is
6–7 Hz at the first contact point; it gradually increases as the rays separate. This

difference is given by ∆fb m *m *b
˜̇ /L− = −( )ρ ρ θ π2 , where ˜̇

Lθ  is the LEO
angular velocity in the plane of incidence. Interference continues until the (a) and (m)
rays disappear below the lower caustic point at θ θρL − ≈ −

o
7 . This scenario has

been discussed in more detail in Chapter 2 using a thin phase screen and scalar
diffraction theory. In particular, Chapter 2, Figs. 2-2c and 2-12. In the case
shown here in Fig. 6-2, the (a) and (b) rays created at the right-hand caustic
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point have phases at the LEO that differ by many cycles from the phase of the
main ray (m). Moreover, they also have substantially lower excess Doppler
frequencies. In this figure the difference is 6–7 Hz initially for a coplanar
geometry, and it grows to 15 Hz as the altitude of the (b) ray impact parameter
separates from the other two. When the occulted GPS satellite does not lie in
LEO orbit plane obliquity effects reduce this Doppler level by up to about 30%;
see Eq. (6.3-4) and Fig. 6-8.

Figure 6-3 shows the amplitude of the field at the LEO that results from
this transient in bending angle shown in Fig. 6-1. In this example the upper
caustic (right) yields strong signal flaring, but flaring from the lower caustic
(left) is more muted. The voltage SNR well into the shadow zone is about
11 dB below voltage SNR for GPS signals in a vacuum. Diffraction creates
edge fringes, but it also softens rough edges, resulting in the more gradual
decay of SNR at the beginning of the shadow boundary.

Figure 6-4 shows the phase difference between the complete field and the
field from the main ray (m) only. This figure begins near the end of the shadow
zone and includes the contact with the first caustic. For a coplanar geometry
this figure covers about 3–4 s of elapsed time. The excess Doppler for the (m)
ray becomes nearly constant at entry into the shadow zone. In fact, a ray with
nearly constant excess Doppler is a very defocused ray (see Eq. (6.3-11)). In the
lower troposphere defocusing from the dry air refractivity gradient compresses
the wider altitude differences of these impact parameters. Nevertheless, this
figure shows an abrupt change in Doppler, within a 20 to 30 msec interval,
from zero to about 7 Hz for a coplanar geometry.

Figure 6-5 shows a blow-up of the amplitude and phase of the field at the
LEO in Figs. 6-3 and 6-4 in the vicinity of θ θρL .− =

o
2 1 around a very deep

amplitude trough in the interference fringes. Here the emerging (a) and (b) rays, still
essentially coherent and at a point slightly earlier than the geometric optics prediction
of the caustic contact point, have strengthened so that their combined amplitude at the
point where their phase is opposite the phase of the (m) ray nearly matches its
amplitude. This causes a near complete cancellation of the total field and a short
burst of rapid phase acceleration. The solid dots in the figure denote measurement
epochs on 20 ms centers (for d dt˜ / mrad/ sLθ = −1 ). The lighter dots are predicted
phase values at future epochs. The SNR error bars are relative; their actual values also
depend on signal gain and processing technique. In these situations the RMS
disparity between predicted and measured phase can exceed 1/4 cycle primarily
because of the inability of the in-receiver phase model to anticipate adequately
the phase acceleration from interference between these multiple rays, and
because of poor SNR noise in the phase measurement. Reducing the sample
time to mitigate phase acceleration effects and to catch stray cycles, adversely
impacts the effective SNR of the sampled measurement, which further
exacerbates the potential disparity.
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Multipath situations like these have led the BlackJack designers to
experiment with alternate sampling and reporting schemes, such as flywheeling
the receiver. An additional technique is to use a realistic excess Doppler
algorithm combined with the receiver fractional phase measurement to connect
phase. Other open loop schemes are feasible; the receiver uses a realistic
in-receiver model and simply reports multiple time-lagged correlation
coefficients in an open-loop mode. This approach leaves it to the data analysts
to recover the various phases from the multiple rays relative to the realistic
model and also to extract their respective amplitudes.

6.2.2 Flywheeling

Flywheeling uses an extrapolation from the in-receiver phase model, set at
an earlier time where the phase was considered to be unambiguous, to predict
the phase at a future epoch, without updating the model with new information
from the most recent epoch because of its uncertainty. Both the closed-loop and
the flywheeling modes are depicted in Fig. 6-5. To simplify the sketch only a
second order loop is shown, which is indicated by the sloped straight lines. But
the receiver actually uses a third order technique to predict forward; the
extrapolation lines in this figure should be curved. In this simplest form of the
in-receiver model, the phase measurements from the previous two measurement
epochs are used to set the Doppler and the phase. In Fig. 6-5 these two points
are located at θ θρL .− =

o
2 14  and 2 16. mrad . In this figure time evolves to the

left for a setting occultation at a rate of roughly −1s/ mrad  for a coplanar
occultation. Thus, the abscissa can be read directly in seconds of time. For a
non-coplanar case the time scale would be compressed by the obliquity; for a
30 deg LEO orbit plane inclination relative to the plane of incidence, the
elapsed time interval in this figure would be 30% greater (see Fig. 6-8). In the
closed-loop mode the receiver uses the measured phase at these two earlier
epochs at θ θρL .− =

o
2 14  and 2 16.  to predict the phase at the next epoch at

θ θρL .− =
o

2 12 . Upon obtaining the new phase measurement at this later epoch

it then updates the Doppler and phase of the model to predict the phase at
θ θρL .− =

o
2 10 . In the flywheeling mode the receiver does not update the

model at θ θρL .− =
o

2 12 , and it extrapolates the model fixed at the earlier

epochs to predict the phase at θ θρL .− =
o

2 10 .

Although this example of near-complete extinction of the field may seem
pathological, it happens. The sharp phase acceleration combined with increased
SNR error in the measurement is problematical for the receiver. To show this,
redraw the phase prediction lines in Fig. 6-5, to run from the opposite ends of
the 1−σ  phase measurement error bars at θ θρL .− =

o
2 14  and 2.12 for the

closed-loop, and at 2.16 and 2.14 for the flywheeling mode. The worst case
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combination for this example runs from the upper end of the error bar for the
earlier point to the lower end of the error bar for the later point. For these
combinations the new phase predictions at θ θρL .− =

o
2 10  for both the

closed-loop and the flywheeling modes are more than 1/2 cycle different from
the actual phase at this point. Both the closed-loop and flywheeling modes have
difficulty with this example.

The receiver automatically changes to the flywheeling mode according to
certain pre-set signal conditions related to SNR and measured phase residuals,
typically around SNRV ≈ 30 , and it can revert back to closed-loop tracking
according to another set of conditions. But, as many of the figures in this
monograph suggest, tracking in either the close-loop or the flywheeling modes
can result in cycle losses. If, for example, the earlier Doppler from the still
strong and unique (m) ray is used in a flywheeling mode to carry the struggling
receiver through the later poorer SNR conditions across a shadow zone, what
happens at the contact point with the upper caustic? It depends on the strength
of that caustic. A weak caustic (see Fig. 5-21 (b)) reveals itself at the LEO as
the envelope defining the amplitude of relatively high frequency interference
fringes. There the main ray (m) is still dominant, and the frequency of the
interference fringes depends on the difference in altitudes of the impact
parameter of the (m) ray and the impact parameter of the caustic rays. The
receiver may have difficulty tracking either one of these nascent (a) and (b) rays
because of their continuing interference with the (m) ray. Figure 5-22 shows the
phase acceleration spikes that result when the rays become comparable in
amplitude.

On the other hand, in the examples given in Fig. 5-32 and in Fig. 6-3, the
extraordinary signal strength at the caustic contact is likely to induce the GPS
receiver to lock onto the phase of the field there. For strong caustics, the
nascent (a) and (b) rays, which are temporarily coherent in their early stage,
become the principal contributors to the field at the LEO. This is the case in
Fig. 6-3 at the caustic contact near θ θρL .− =

o
2 0 . Until the impact parameters

of these two nascent rays have had time to separate after the caustic contact
point, there is very little interference between them. The amplitude of the field
can be very strong at the LEO, depending on the curvature of the impact
parameter curve θ ρL vs *  at the caustic contact point (see Eq. (5.12-11)). The
width of a caustic peak for strong nascent rays can be hundreds of milliseconds,
roughly given by ∆t d d~ | / | / ˙

L L*
/3 2 2 1 3θ ρ θC . This width can be several to many

20-ms correlation intervals. For examples, see Fig. 5-32 (∆t ≈150  ms) and
Fig. 6-3 (∆t ≈ 500  ms); easy enough to be lured there by these strong and
locally stable fields. In this case the receiver reverts from the flywheeling
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mode2 to closed-loop and takes on the Doppler of the new field formed by the
composite of all the rays. In the case of Fig. 6-4, the new Doppler abruptly
(<50 ms) becomes 7 Hz less than the original Doppler for the (m) ray. The (m)
ray has not yet disappeared, but it is no longer “recognized”. One has a 7 Hz
negative bias relative to the (m) ray resulting from the receiver jumping from
one ray to the other, from (m) to (b). However, it should be noted in this
example, especially if the receiver were in fact to remain in the closed-loop
mode through this delicate transition shown in Fig. 6-5, that no cycles were
lost. The reported phase by the receiver in this case would be the measured
phase of the complete field at the LEO from all rays. The problem is with the
interpretation of the measurements resulting from the implicit adoption of a
single ray paradigm.

Probably a prudent rule of thumb declares that whenever a caustic-like
feature is encountered in the amplitude data, this probably means that it is a
strong caustic in order to stand out in noisy data. This feature then is a
harbinger for subsequent multipath and for the possibility that certain rays may
not be properly accounted for with the usual ray theory approach i.e., the Abel
transform. In fact, the mere event of the receiver converting to the flywheeling
mode, should serve as an alarm announcing multipath and that spectral
techniques may be required.

6.2.3 Refractivity Error from a Single Ray Paradigm

Figure 6-6 shows the receiver in the flywheeling mode using the excess
Doppler from the (m) ray just prior to entering the shadow zone (θ θρL − ≈

o
7 ) to

power through the shadow zone with poor SNR. Closed-loop operations resume
with return of strong signal near the first caustic contact point (θ θρL − ≈

o
2 ), a few

seconds later. The continued existence of the (m) and (a) rays after the (b) ray is
“tracked”, and their contributions to refractivity recovery, are essentially
ignored in the multipath zone with the single ray paradigm. It is straightforward
to calculate the error in recovered refractivity caused by ignoring this multipath.

                                                  
2 For the specific refractivity profile used in Figures 6-1 through 6-5, it is doubtful that
a high performance receiver like the BlackJack actually would drop out of the
closed-loop mode upon entering the shadow zone. Diffraction softens the rate of falloff
in amplitude at the shadow boundary. Also the average minimum amplitude in this
example is still 20% of the original amplitude. At θ θρL

− ≈
o

2 1.  there is a single episode

of almost complete cancellation between the (m) ray and the combined field from the
emerging (a) and (b) rays. This event could force the receiver into the flywheeling mode,
but it is somewhat irrelevant. In both modes, flywheeling or closed-loop, the resulting
error comes more from the analysis of the tracking data than from the receiver. Following a
single ray paradigm the error in the refractivity recovery would be essentially the same
regardless of mode.
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For example, one can adopt as the true refractivity model the same model used
to generate Figs. 6-1 through 6-5. This includes an exponential model for dry
air plus a localized Heaviside-like component for the water vapor layer. This
causes the multipath zone shown in Fig. 6-2 with the three rays, (m), (a) and
(b). The adopted model for recovery would be the exponential-only model,
which has no additional Heaviside-like refractivity component and it allows no
multipath. If we then extend the impact parameter curve from the (b) ray near
the caustic up to the (m) ray, as shown in Fig. 6-6, we have essentially ignored
the entire anomalous (a) ray and a segment of the (m) ray. These sections are
shown as the dashed loop in this figure. A best fit of No  and H  from the
exponential-only model to this region can be done. Comparison of the
recovered refractivity profile from this fitted model with the true refractivity
profile gives the error resulting from overlooking the dashed segments of the
(a) and (m) rays. This is shown in Fig. 6-7. Here the true refractivity profile
N( )*ρ  generates the bending angle profile shown in Fig. 6-1, but the modeled

refractivity profile ˆ ( )*N ρ  is only an exponential fit to the observations. This
shows the difference in refractivity profiles between the fitted model and the
true model. In this case the error in the refractivity is negatively biased because
the excess Doppler from the (b) ray, including its extrapolation backward, is on
average less than the combination of the (a) and (m) rays. This systematic loss
of counted cycles relative to the (m) and (a) rays is equivalent to a negative
error in the Doppler and this effectively leads in this example to a negative
error in the recovered refractivity profile. See Appendix F for a further
discussion of the error in recovered refractivity expressed in terms of an error in
excess Doppler or bending angle.

An examination of actual SNR profiles from LEO occultation observations
reveals a seemingly endless number of scintillation episodes, particularly as the
signal passes through the water vapor-laden lower troposphere or through
various layers in the ionosphere. Flywheeling does not appear to provide a
comprehensive remedy when deep scintillation occurs. It probably will be
augmented by the JPL group soon in favor of some open-loop scheme, such as
reporting correlation coefficients using a realistic Doppler model, and with
multiple time-lags between the predicted and received time series.

6.3 Spectral Representation of the Field at the LEO

With these caveats, we now assume that an appropriate signal processing
scheme has been implemented so that the amplitude and connected phase has
been recovered from the receiver, plus the unavoidable SNR noise. We start
from the spectral representation for an outgoing wave evaluated at the LEO
located at ρ θL L,( ) . For the emitting GPS satellite located at ρ θG G,( ) with
θ πG = , a fixed value, the spectral integral representation for the field is given
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from Eqs. (5.9-5) and (5.9-6), modified to account for the finite value of ρG .
We have
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where3

                                                  
3 The spectral representation for the field at the LEO when the GPS satellite is located
at a finite distance, about 4.5 Earth radii, must account for the wavefront curvature of
the incident wave. This is a spherical wave of the form eiρ ρLG

LG
/  centered at the

emitting GPS satellite (see Figure A-3). Although we did not derive this form in
Eq. (6.3-1), its extra terms compared with the collimated form given in Eqs. (5.9-5) and
(5.9-6) can easily be inferred from the difference in the asymptotic forms at large
distances out of the atmosphere for the incoming spectral coefficients a

l

− ( )ρ  for these

two cases. These are given in Eqs. (5.5-3a) for the case of a collimated or planar
incident wave and in Eq. (5.5-3b) for the case of a spherical incident wave. For the
latter, a

l

− ( )ρ  carries the extra factor i l

l

+ +1ξ ρ ρ( ) /
G G

, which is derived from the multipole

spectral expansion for a spherical wave [5] combined with the addition theorem for spherical
harmonic functions. But, for ρ ν

G
>> , we may use the asymptotic form for the spherical Hankel

function ξ ρ
l

+ ( )
G

. This factor has the asymptotic form

i il

l

+ + → − − +1 2 2 2 1 4 2 2 1 2ξ ρ ρ ρ ν ρ ν νθ
ν

( ) ( /( )) exp[ (( ) )]/ /

G G G G

G

which coincides with the extra terms in Eq. (6.3-1). Here the phase delay spectral density
function Ψ( , )+ −  is referenced to the emitting GPS satellite, whereas Ψ( , )+ −  in
Eqs. (5.9-5) and (5.9-6) for the collimated case is referenced to the line θ π= / 2 . Also,
the constant E

o
 has a different meaning from E

o
 in Eq. (5.9-5). Essentially it must

account for the 1/ ρ
LG

 space loss that the amplitude of the spherical wave emitted from

the GPS satellite incurs in traveling to the LEO. This is inconsequential in recovering
the refractivity profile because it is the variability of the amplitude and phase over an
occultation episode that contains the atmospheric information. The product
(cos cos )θ θ

ν ν

L G  in Eq. (6.3.1) is related to the reduced limb distance,

D D D D D= +
G L G L

/( ) , with D
G G

G= ρ θ
ρ

cos
*
 and D

L L

L= ρ θ
ρ

cos
*
.

The ray theory interpretation of θ
ν

L  and θ
ν

G  is as follows. Let ν ν= *  be a spectral

number at which Ψ  assumes a stationary value. When super-refracting situations are
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The spectral density function G G† †( ) [ ( ), ]ν ρ ν ν=  for the phase delay from the

refractive gradient and ρ ν†( ) are discussed more fully in Section 5.7, and their
forms are given in Eqs. (5.7-2) and (5.7-11), respectively4. They are the spectral
density forms applicable to an outgoing wave at the position of the LEO. We
have taken minor license with Eq. (5.9-5) by consolidating the radial and
transverse components into a single scalar form for the electric field E ρ θL L,( ) .
The resulting error is negligible for occultations.

We note that the spectral density for the phase, Ψ( , )+ − , is a function of
ρ ρ θ νG L L, , ,( ) . Ψ( , )+ −  is the appropriate spectral density function for a

position located well into the upper half-plane, π θ>> >>L 0 , and in the
outgoing quadrant, π α θ/ L L2 0− >> >> . Ψ( , )+ −  gives the spectral density of
the complete phase delay at the LEO position ρ θL L,( )  relative to the emitting
GPS satellite located at ρ θG G,( ) with θ πG = . It includes the geometric delay

terms and the term − 2G†( )ν  for the delay from the refractive gradient. The
geometric delay term, Dν

L , gives the delay in phase along a straight line
between the LEO and the tangency point of the line on a sphere of radius

ν ρ< L  centered at the origin. The term ν θ θνL
L−( ) is an arc length along this

sphere of radius ν  and it is subtracted from Dν
L  to correct it to the intersection

of the sphere with the line θ π= / 2 , which is the fixed reference line for
computing phase delays at the LEO. Similarly, the terms Dν ννθG G+  give the

                                                                                                                           
avoided, we know that to high accuracy ν ρ*

*
=̇ , the impact parameter of the

corresponding ray. Then from Eq. (6.3-1) and Bouguer’s law it follows that θ
ρ*

L

becomes the angle between the ray path tangent vector and the radius vector of the
LEO, χ δ

L L
+ , in Figure A-3. Similarly, θ χ δ

ρ*

G

G G
→ + . Note from Figure A-3 with

θ π
G
= , it follows that θ θ θ δ δ α

ρ ρ* *

G L

L G L L
+ − → + = .

4 Incidentally, the difference between ρ ν† ( )  and ν  is very small for a large sphere,
ro / λ >> 1. Here that spatial difference is about 7 m.
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geometric phase delay from the emitting GPS satellite along the straight line to
the tangency point on the sphere of radius ν  and thence along the sphere to the
line θ π= / 2 . For the LEO located at a given point ρ θL L,( ) , the spectral

neighborhoods around the stationary phase points ν* , that is, where
∂ ∂ν

ν
Ψ / | * = 0, provide the principal contributions to this spectral integral in

Eq. (6.3-1).
E ρ θL L,( )  is the scalar field at the LEO; the phase of E ρ θL L,( )  includes an

integer multiple of 2π  driven by the absolute phase represented by the spectral
density function Ψ( , )+ − . But, as we just discussed, it is problematic whether or
not the actual phase measurements can yield unambiguous connected phase at
all times. Nevertheless, it is important to have the correct phase change between
observation epochs, uncorrupted by systematic cycle slipping by the receiver or
by the post-measurement data editing. Occasional cycle breaks, although
undesirable, are probably inevitable. We assume here that cycle breaks have
been fixed.

6.3.1 Stopped Field at the LEO.
Let ˆ ,L LE ρ θ( )  be defined as the “stopped” or “counter-rotated” signal

received by the LEO. In this case “stopped” means that the orbital Doppler tone
between the LEO and the observed GPS satellite has been removed. Also, the
excess Doppler based on a first order model for the atmospheric refractivity
signature has been removed. Thus

ˆ , , exp ( )L L L LE E i tmρ θ ρ θ ϕ( ) = ( ) −( ) (6.3-3)

where the model phase ϕm t( )  is a known function that describes the time

history of the stopping phase. Dealing with ˆ ,L LE ρ θ( )  rather than E ρ θL L,( )
alleviates aliasing problems in finite sampling techniques and sharpens the
resolution. To get an idea of the magnitude of the variability of ϕm t( ) , we will
form the time derivative of Ψ( , )+ − , the spectral density for the phase delay at
the LEO given in Eq. (6.3-1). We evaluate Ψ  at a stationary point in spectral
number ν ρ*

*=̇  where ∂ ∂ν θ θ ννΨ / /L
†= − − =2 0dG d , and then we

differentiate it with respect to time to obtain ˙
*Ψ . This has already been

discussed in Section 5.12 for a circular LEO orbit with a coplanar geometry,
that is, with the GPS satellite located in the orbit plane of the LEO.

6.3.2 The Obliquity Factor.
However, we also should allow for the obliquity effect because in general

coplanarity does not apply. From Fig. 6-8 we have two angles defining the
angular position of the LEO, θL  and ˜

Lθ . Here θL  gives the angular position in

the LEO orbit plane, but ˜
Lθ  gives it in the propagation plane, which is defined
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by the ray from the GPS satellite located in the negative z direction5 to the
LEO. This propagation plane includes the “geocenter” (the center for the local
geoid) and defines the great circle arc AC on the unit sphere in Fig. 6-8. The
LEO orbit plane defines the great circle arc BC. The departure from coplanarity
is given by the inclination angle I of the LEO orbit plane about the x-axis in the
figure relative to the direction to the GPS satellite. The inclination angle I is
satellite position-dependent, but it is readily expressed in terms of the orbit
elements for the two satellites. The boresight-offset angle is ε . This is the
azimuthal angle about the radial axis relative to the in-orbit plane direction at
which the GPS satellite would be seen from the LEO. The spherical triangle ABC
in Fig. 6-8 gives the relationship between θL  and ˜

Lθ . We have
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This provides the relationships between θL  and ˜
Lθ , and also the obliquity factor

d d˜ /L Lθ θ  to reduce the Doppler for the effect of non-coplanarity. It follows
that

˜̇
˜

˙
L

L

L

Lθ
θ
θ

θ=










d

d
(6.3-5)

This obliquity factor is essentially constant over an occultation episode; thus,
the relationship between ˜

Lθ  and θL  is essentially linear. The obliquity factor is

shown in Fig. 6-9 as a function I. Here ˜ sin /L Lθ = ( )−1 r ro  with r roL / .=1 1,

which gives about the correct value of ˜
Lθ  during an occultation. Thus, an

inclination of 30 deg reduces the excess Doppler to about 2/3 of the coplanar
value. It is ˜

Lθ  that should be used in Bouguer’s law and in the spectral density
functions involving phase. Accordingly, we adopt the following convention in
the subsequent discussion. In any expression that involves a sensitive variable,
such as phase or angular velocity, we shall replace θL  with ˜

Lθ ; otherwise, we
leave the notation as is.

6.3.3 Doppler Variability.
                                                  
5 We assume here for calculation of the obliquity factor that the emitting GPS satellite
is located infinitely afar in the negative z-direction, θ π

G
= .
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We now estimate the variability of ϕm t( ) . For the purpose of calculating
the Doppler variability we assume circular orbits for the satellites. From
Eq. (5.12-4) it follows after this replacement of θL  with ˜

Lθ  in Bouguer’s law
that

˙ ˜̇
* * LΨ = −ρ θ (6.3-6)

where the phase Ψ Ψ* *G L L, , ˜ ,= ( )ρ ρ θ ρ , and ρ*  is the impact parameter
corresponding to a specific ray, not necessarily unique. To simplify this
calculation we assume that the emitting GPS satellite is at an infinite distance.
Its actual finite distance and orbital motion has a minor effect on our estimate
here. From Bouguer’s law in Eq. (5.6-5) for the GPS satellite at an infinite
distance we have

ρ ρ θ α ρ α α* L L L L L Lsin ˜ O= +( ) = + + [ ]o D 2 (6.3-7)

where ρ ρ θo = L Lsin ˜  and DL L L Lcos ˜= +( )ρ θ α . The quantity DL  is close to the
distance (or reduced distance) in phase units (i.e., distance × 2π λ/ ) from the
LEO to the Earth’s limb, even with a modest cosine effect from orbit
inclination angle I factored in. For the 20 cm wavelength of the GPS signal,
ρo ≈ ×2 108 at sea level and for a LEO orbit radius r roL .=1 1 , DL ≈ ×1 108 . It
follows that

˙ ˙ ˜̇ ˜̇
* L L L LΨ = − − ( )ρ θ θ αo D (6.3-8)

The first term on the RHS of Eq. (6.3-8) produces the orbital Doppler term due
to the LEO. For a typical LEO orbit ˙  mrad/ sLθ ≈1  and it is essentially constant

with time; thus, for the LEO part, ρ θ πo
˜̇ / KHzL 2 30≈  times the obliquity factor

d d˜ /L Lθ θ , which is shown in Fig. 6-9 as a function of the inclination angle I of
the LEO orbit plane.

The orbital velocity of a GPS satellite is about half the LEO velocity
because its orbit radius is about four times larger. During an occultation the
position of a GPS satellite is located about 4.5 Earth radii away from the LEO
on the far side of the Earth; so, only about a quarter of its velocity vector
projects plus or minus in the direction of the LEO. Also, the GPS satellite orbit
planes are inclined differently to the LEO orbit plane, and the limb of the Earth
as seen from the LEO is offset downward from the LEO orbit velocity direction
by roughly 25 deg. The upshot is that all of these factors combine to yield a
maximum Doppler during an occultation from both LEO and GPS orbital
kinematics of around 35 KHz.
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The second term in Eq. (6.3-8) is the excess Doppler from the bending
angle  αL  caused by the atmospheric refractivity;  here

D d dL L L L
˜̇ / ˜ / Hz/ mradθ π θ θ2 ≈ ( )15 . Dry air yields a bending angle for a ray

path tangency point at sea level of about 20 mrad; so, this component reaches
about 300 Hz. But, bending angles through water vapor in the lower
troposphere can exceed twice this level. The water vapor contribution is largely
unknown a priori, but it can be characterized statistically by latitude and
season. Excess Doppler signatures typically range over several hundred Hz.

What about the variability of these Doppler frequencies? Let us assume that
the LEO is in a circular orbit. Then from Eq. (6.3-6) it follows that

˙̇ ˙ ˙ ˜̇
* * LΨ = −ρ θ (6.3-9)

The term ρ θ ρ θ* *
˜̇̇ ˙ ˜̇

L L<<  and it is ignored here. The acceleration contribution
from the GPS satellite will be small over the relatively short time intervals of
interest here. Upon differentiating ρ*  from Bouguer’s law in Eq. (6.3-7), it
follows that

˙ ˜̇
* L L Lρ θ ζ= D (6.3-10)

where ζ α ρL L L / *= −( )−1 1D d d  is the defocusing factor. It follows that the
acceleration in the phase term is given by

˙̇ ˙ ˜̇
* L L LΨ = −D θ ζ2 (6.3-11)

Similarly, it follows that the acceleration from the orbital motion of the LEO is
given by

d D

dt
D

2

2
2L

L L
˙ ˜̇= θ (6.3-12)

Subtracting Eq. (6.3-12) from Eq. (6.3-11) gives the acceleration in excess
phase
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It follows for strong defocusing that the excess Doppler rate approaches a
constant value with time, 10-15 Hz/ s , depending on the obliquity of the orbit
and propagation planes. (Therefore, the bending angle rate of a given ray in
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strong defocusing conditions will approach a constant, d dtαL / ~  mrad/ s→ 1 ,

or equivalently, d dα θL L/ ˜ ~→ 1)
Over the course of a few tens of seconds that we will be interested in

recovering the refractivity profile under adverse signal conditions, how well can
we fit the stopping phase with a simple linear polynomial in time ϕ ωm mt t( ) = ?
Eq. (6.3-13) suggests that in strong defocusing this linear form should be good.
We set ωm = ˙

*Ψ . Then ˙ ˙ ( ) ˙̇
*Ψ Ψ− ≈ϕm t t . From Eq. (6.3-11) it follows that

˙̇ / ~ Hz/ s*Ψ 2 2π <  in the lower troposphere where the defocusing factor from
dry air has a value around 1/10. The defocusing in the lower troposphere causes
the impact parameter separations between multipath rays to be proportionately
compressed, thereby reducing their Doppler differences by a factor of about 10.
Thus, for a 10s single-sided sample interval we can use a linear term in time to
stop the Doppler in the signal with a frequency run-off of a few tens of Hz.
Sampling the signal at a 50 Hz rate usually should satisfy the Nyquist criterion
for this sample interval. At the altitude of the sporadic E layer the ambient
value of the defocusing factor is essentially unity; we would need a narrower
sample interval there.

The last question concerns the spread in Doppler tones from different
multipath rays. We already have seen that the spread in altitudes of the
tangency points typically is less than 5 km. Thus, the maximum spread in

Doppler is less than D k DL L L
˙ / / Hzθ π2 5( )( ) ≈ 25 ; the bandwidth of most

interference spectra is less than 10 Hz. A sample rate of 50 Hz should suffice.
Incidentally, Eq. (6.3-10), which gives the velocity of the impact parameter

of a ray, shows the retardation caused by the defocusing factor ζL . In the lower
troposphere the dry air component of the defocusing systematically compresses
the altitude separation between multipath rays and narrows the maximum
bandwidth of the interference spectrum, see Eq. (5.12-18).

6.4 Refractivity Recovery

Let us apply a discrete Fourier transform to the stopped LEO observations
given in Eq. (6.3-3) and to the spectral representation for the stopped wave
given in Eq. (6.3-1). For the latter we have
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Here ˜ ˜
L Lθ θo ot= ( )  is the LEO orbit angle at the center of the data interval

measured in the plane of incidence, see Fig. 6-8. Eq. (6.3-4) provides the
relationship between ˜

Lθ  and θL . T  is the total time span covered by the
observations and M +1 is the total number (odd) of samples; for example,
M T= 50  for a 50-Hz sample rate. Using the spectral representation in
Eq. (6.3-1) for ˜ ,L LE ρ θ( )  and ϕ ωm m ot t t( ) = −( )  for the stopping phase, we
have from Eq. (6.4-1)
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Now we replace the discrete Fourier transform with the integral transform using
the fact that
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Here δ ( )u  is the Dirac delta function. Setting u = π  defines the Nyquist limit,
| | /ω π≤ M T . Upon replacing the discrete “delta function” in Eq. (6.4-2) with
the Dirac delta function, it follows that the Fourier transform of ˜ ,L LE ρ θ( ) is
given by
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For a finite sample interval the discrete Fourier transform yields the discrete
delta function, which has the Sin SinNx x/  character shown in Eq. (6.4-3), and
the actual time series would have additive noise. The granularity threshold from
the discrete transform can be obtained from the first zero of the discrete delta
function in Eq. (6.4-3), which occurs at u M= +2 1π / ( ). This is equivalent to
∆ω π= 2 / T , which is essentially the uncertainty inequality for a discrete
process. In impact parameter space this relationship maps into a granularity in

altitude of λ ρ π λθ ω π∆ ∆* / ˜̇ /L2 21= −  = ( ) ≈λ θ/ ˜̇ / mLT T200 , or about 20 m for
T =10s. Instead of a Fourier transform, one could use any one of several other
transform schemes, such as the Morlet wavelet transform, which treats the time
series as a spectral composition of wave packets. The subsequent equations will
differ and their efficiencies in recovering the refractivity profile might vary, but
recovery should still be feasible. For the purpose of outlining this particular
spectral approach for recovering the refractivity profile, we avoid further
discussion of these important computational and related stochastic issues.

Note in Eq. (6.4-4) that ωm ~ rad/ s2 105× , or 30-35 KHz. On the other hand,
ω πν / 2  varies over only a few tens of Hertz within the time interval for which
the Fourier transform is applied. We have used the slowly varying character of
˜ Lθν  and ˜ Gθν  to simplify the spectral expressions given in Eq. (6.4-4). Over the

bandwidth spanned by ων , ˜ ˜L Gθ θν ν+  changes by less than 0.1%. Thus, we may

set ˜ ˜ ˜ ˙ ˜L G
L L Lθ θ θ α θν ν+ = + =o o o  in the slowly varying terms (but not in ΨLo ). The

error here is roughly 1% or smaller, the ratio α θL L/ ˜t tk k( ) ( ) . The Fourier
transform in Eq. (6.4-4) further simplifies to
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We now take the Fourier transform over the occultation sequences of
stopped phase and amplitude measurements made by the LEO given in
Eq. (6.3-3). The temporal breadth of this sequence T  would depend on one’s
goals for refractivity recovery. We equate these two Fourier transforms. The
LHS on the upper line of Eq. (6.4-5) becomes the Fourier transform of the
sampled amplitude and stopped phase of the field measured by the LEO; the
RHS is from wave theory.

We note the one-to-one correspondence between ων  or excess Doppler and

the spectral number ν  in wave theory, or the impact parameter in ray optics,



488 Chapter 6

which holds when spherical symmetry applies. Also, we note that the bending
angle may not be a unique function of time (or ˜

Lθ ), but it is a unique function
of excess Doppler, and when spherical symmetry holds it is a unique function
of impact parameter through Bouguer’s law. The impact parameter diagrams in
Figs. 5-20, 5-26, 5-28, 5-31 and 6-2 all show implicitly this uniqueness
property of the bending angle versus impact parameter when spherical
symmetry holds. See also Eqs. (6.3-6) and (6.3-8), which apply to a circular
LEO orbit. We have converted through a Fourier transform the time-series of
phase and amplitude measurements of the field, in which the bending angle
may not be unique, into a spectral series in which the bending angle is unique
(when spherical symmetry applies). It follows that we should be able to
unambiguously determine the bending angle profile versus excess Doppler
from the Fourier transform ˆ[ ]E ω , given, of course, the limitations imposed by
measurement errors.

Returning to Eq. (6.4-5), the LHS is the Fourier transform ˆ[ ]E ω  from the
observations. It is a known quantity. The RHS is from wave theory; it also
contains quantities that are known a priori or from POD information, except for

G G† †( ) ( ),ν ρ ν ν= [ ]. Forcing equality between these two Fourier transforms

forces the phase of ˆ[ ]E ω  to equal ΨLo . Therefore, we can determine values for

G†( )ν  from Eq. (6.4-5) over the Fourier bandwidth spanned by ω .
However, a more suitable platform for extracting values for log n  is

dG d†( ) /ν ν . Recalling that g ŷ†( ) = 0 , it follows from Eq. (6.3-2) that

dG

d
K

d n

d
y y d

†

˙
log

Ai[ ˆ] Bi[ ˆ]
†ν

π
ρ

ρν ρω
= − +( )∞

∫ 2 2 (6.4-6)

Let us now differentiate the Fourier transforms in Eq. (6.4-5) with respect to ω .

Noting that d dω ν θν / ˜̇
L= , we obtain

d E

d
i

dG
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log ˆ

˜ ˜ ˜̇
L L

†ω

ω
θ θ

ν
θν

ν
ν

[ ]
= − −






 −2 1 (6.4–7)

However, from Eq. (6.4-1) it follows that

d

d
E i tE t i t dt

ω
ω ρ θ ωˆ[ ] ˆ , ( ) exp( ) = ( ) ( )

−∞

∞

∫ L L (6.4–8)

No explicit differentiation of the observed phase and amplitude with respect to
time is required to obtain the derivative of ˆ[ ]E ω  with respect to ω . In
Eq. (6.4-6) we note that ∂ ∂ ρ ν ∂ν ∂ρ( [ , ] / ) /G ≠ 0  at ρ ρ ν= †( )  (whereas
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∂ ρ ν ∂ρG[ , ] / = 0). It follows that Eq. (6.4-6) provides a stable means for
determining the profile for d n dlog / ρ  from the determination of

dG dρ ν ν ν†( ), /[ ] .
Let the Fourier observation function F[ ]ω  be defined by

˜̇ ˜̇ log ˆ
˜ ˜

L L Lθ ω θ
ω

ω
θ θν

ν

ν
νω

F i
d E

d o[ ] = [ ]
+ −( ) (6.4–9)

F ων[ ] is a determined spectral quantity from the measurements and the POD
information. From Eqs. (6.4-6)-(6.4-11) it follows that
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Eq. (6.4-10) is in effect a linear system, an integral equation from which the
profile d n dlog / ρ  may be recovered from a spectral sequence of known values
for F[ ]ω  based on the spectral derivative of the Fourier transform of the
observations. Recalling Eqs. (5.4-3) and (3.8-7), the negative argument
asymptotic forms for the Airy functions are Ai[ ˆ] Bi[ ˆ] ( ˆ) /y y y2 2 1 1 2+ → −− −π

with ˆ ˙ /y K= −( )−
ν ν ρ4 2 2 4 . Eq. (6.4-10) becomes
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It follows from Eqs. (6.4-10) and (6.4-11) that

α ν ω θ ω ω θ νν νL L L( ) ˜̇ ,   ˜̇↔ [ ] = + }F m (6.4–12)

To the extent to which the asymptotic forms for the Airy functions are
applicable, F ων[ ] is proportional to the bending angle for an impact parameter

value of ν . It follows for a setting occultation ˜̇
Lθ <( )0  that if

α ν νL ( ) ,  → →∞0  then F ω ων ν[ ]→ → −∞0,  .
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More generally, setting ν ρ= * , corresponding to a value of

ω ω ρ θν = −m * | ˜̇ |L  within the Fourier bandwidth, one can form
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The second integral on the third line involving the Airy functions is completely
deterministic. The fourth line is obtained from integrating by parts. The
weighting function W( , )*ρ ρ  is given by
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In the limit as λ → 0 , W( , )*ρ ρ  resembles a Dirac delta function, having
similar properties. W( , )*ρ ρ  and its integral, which rapidly approaches unity
with increasing ρ ρ> *, are shown in Fig. 6-10. The decay profile of W( , )*ρ ρ
is determined by the span in ŷ-space over which the Airy functions make their
t r a n s i t i o n  t o  n e g a t i v e  a r g u m e n t  a s y m p t o t i c  f o r m s ,
~ ( / ) m

*
* *

/2 2 4 301 2 2 1 3k K n r− = ≈ρ λ π  . Therefore, W( , )*ρ ρ  strongly weights

the contribution from log ( )n ρ  in the convolution integral in Eq. (6.4-13) at
ρ ρ= * , and it attenuates rapidly for ρ ρ> * to nearly zero within 30 m. The

half-area point is at 7 m. This spatial interval, ~ ( / )* *
/2 42 2 1 3λ πn r , is where the
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differences between wave theory and ray theory mainly arise. If we
approximate W( , )*ρ ρ  by a Dirac delta function we have

1
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∫ ∫ (6.4-15)

Eq.(6.4-15) is the wave theory equivalent of the Abel integral transform.
The Abel transform owes its existence to a remarkable property of the integral

2
2 2 2 2

xdx

x a b xa

b

( )( )− −
=∫ π (6.4-16)

for all real values of a  and b a> . Unfortunately, there does not seem to be the
crisp equivalent of the Abel transform in wave theory. From Eq. (6.4-13) and
upon setting the Airy functions to their negative argument asymptotic forms,
Ai[ ˆ] Bi[ ˆ] ( ˆ) /y y y2 2 1 1 2+ → −− −π , we have
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By solving the convolution integral in Eq. (6.4-15) the refractivity profile is
recovered from an integral operation on the spectral quantity F ων[ ], which is

related directly to the spectral derivative of the Fourier transform of the stopped
observations ˆ , ( )L LE tρ θ( )  through Eqs. (6.3-3) and (6.4-9), and which is
essentially proportional to the bending angle associated with an impact
parameter value ν .

The time span T  used in the Fourier treatment just described has not been
specified. When the SNR permits, one can partition the entire data set into a
time-ordered series of contiguous subsets or data packets of temporal width
∆Tk . Over each packet a Fourier transform can be applied, and the spectrum for
each of these strips can be assembled contiguously and displayed as a function
of time, or as a function of nominal ray path tangency altitude, and so on.
Figure 2-3, which is from [6], shows an example of this approach. This is one
example of the so-called sliding spectrum technique [7].

6.4.1 Super-Refractivity

The integral for 2dG d†( ) /ν ν  in terms of the refractivity gradient in
Eq. (6.4-6) requires special treatment to handle super-refractivity conditions.
We have used ρ = knr  as the integration variable for convenience, but implicit
in its use is the assumption that d drρ /  is positive throughout. Within a
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super-refracting medium the ray curvature index, β = − ′n r n/ , is greater than
unity. For a super-refracting spherical layer the radius of curvature of the ray is
less than the radius of curvature of the refracting surface. Super-refractivity
occurs when d dr nkρ β/ ( )= − ≤1 0 . The region where d drρ / < 0  should be
evident from the data, and the critical value of dn dr/  at the boundary is
known, dn dr n r/ /= −  ≈ − × − −157 10 6 1 km . Figure 6-11 shows a profile for a
hypothetical refractivity gradient in the vicinity of a super-refracting layer. It
could correspond to a narrow marine layer in the lower troposphere. Over the
range r r rd u≤ ≤  the profile is super-refracting.

Figure 6-12 is a schematic showing the ray geometry for a super-refracting
spherical layer with an upper boundary at r ru=  and a lower boundary at r rd= .
Such layers are called ducts in ground-based radio transmission, and the word
“ducting” is often used instead of “super-refracting”. Two critical rays are
shown in this figure. The upper critical ray just grazes the top of the
super-refracting layer; it has an impact parameter value of n r ru u( ) . The lower

critical ray has a tangency point at r rc
* =  and an impact parameter value of

n r rc c( ) ; it manages to escape from the top of the layer just before its ray path
would have been turned inward by the strong refractive gradient in the layer.
This lower critical ray escapes tangentially to the surface at r ru= . It follows
from Bouguer’s law that the impact parameter for this critical ray is

n r r n r rc c
u u

( ) = ( ) . Thus, in geometric optics we have a discontinuity in the
bending angle profile versus impact parameter at this critical impact parameter
value ρ* = ( )kn r ru u. Two rays, one just grazing the top of the layer with r ru* = ,

and the other at the lower critical tangency point r rc
* = , both have the same

impact parameter value but different bending angles. A ray with its turning
point radius in the range r r rc

u< <*  can not escape; for a ray to exist the
turning point radius r* must either equal or exceed r ru= , or it must be equal to

or less than rc .
Figure 6-13 shows an impact parameter curve ρ* * *( )= kn r r  versus turning

point radius r* in the vicinity of a super-refracting layer. Note that ρ ρu d< . A

hypothetical ray with its tangency point in the range r r rc
u< <*  would have an

impact parameter value in the range ρ ρ ρu d< <* . But from Fig. 6-13 we see
that in traveling along such a ray in the range r r ru* ≤ ≤ , one would eventually
come to a point on the ray in the super-refracting layer past which ρ ρ( ) *r < ,
which is not allowed in geometric optics for a spherical geometry. See
Appendix A, Eq. (A-4b). A necessary condition for the existence of a real ray between
specified endpoints is that ρ ρ≥ * at all points along the ray. It is no good for ρ ρ≥ * to
hold part of the way; it must hold all the way between end points, or else the
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term ρ ρ2 2 1 2
−( )*

/
 in the bending angle and phase delay equations becomes

imaginary at some point.
Figure 6-13 shows that the value of rc  relative to rd  depends on the

difference ρ ρd u−  and on the average slope of d drρ /  below the
super-refracting layer. A first approximation is given by

r r r rc
d u d

SR
c≈ − −( )
−

−

β
β

1

1
(6.4-18)

where β c <1 is the average value of β  below the lower boundary of the

super-refracting layer in the vicinity of r rc= , and βSR >1 is the average value

of β  in the super-refracting layer. If β c  is near unity, that is, nearly

super-refracting, then the difference r rd
c−  can be much larger than the

thickness of the super-refracting layer itself.
For geometric optics, then, the refractivity profile in the range r r rc

u< <  is
terra incognito. Moreover, geometric optics already begins to fail6 before
reaching these critical tangency point limits at r rc

* =  and r ru* = .
No such restriction applies in wave theory, but a super-refracting layer does

complicate matters. The point where d drρ / = 0  marks the boundary of a
super-refractive layer, which necessitates breaking the integral in Eq. (6.4-6) for
2dG d†( ) /ν ν  into three sections, one section above the upper boundary at
ρu u ukn r r= ( ) , one below the lower boundary at ρd d dkn r r= ( ) , and one through

the layer where d drρ / < 07. Alternatively, one can write the integral in a less
convenient form in terms of the radial coordinate itself. The end point of the

                                                  
6 For a geometric optics version of a super-refractive boundary caused by a 5%
discontinuity in refractivity, see Figures 2-2 (b) and 2-8 (a). The predicted amplitude is
exactly zero in the shadow zone. Figure 2-12 shows the scalar diffraction version.
Figures 3-24 and 3-25 show the Mie scattering version.
7 Recall in Section 5.7, Eq. (5.7-27), that for a fixed spectral number ν  we have set
∂ ρ ν ∂ρG[ , ] / = 0  for ρ ρ ν

ρ
≤ = −† †ŷ K . This is an approximation that exploits the

near-equality of 2dG d[ ( ), ] /†ρ ν ν ν  and α ν
L
( )  in a medium with a moderate refractive

gradient (see Appendix J). The error is small, but it depends on the curvature of the
actual refractivity profile in the immediate vicinity of this turning point where the phase
of the incoming wave is rapidly becoming stationary for decreasing ρ ν< . See

Figure 5-7 for the exact phase profile ∂ϑ ∂ρ
l

− /  in an Airy layer compared to

∂ ρ ν ∂ρG[ , ] / . In a super-refractivity zone where ρ ν ρ
u d
< < , we need the integral for

2 2dG d dG d† †( ) / [ ( ), ] /ν ν ρ ν ν ν=  only for those sections where ρ ρ ν≥ † ( ) . Hence the
three sections.
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integral becomes a function of ρ ν† †( ) / kn r( ) . This has three roots for r†  when
ν  lies within the range ρ ν ρu d< < , one above, r ru> , one below, r rd< , and
one within the super-refractive layer, r r rd u< < .

Let us define the index of refraction profile according to regime,

n r

n r r r

n r r r r

n r r r

d

d u
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( ),  ,
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Figure 6-14 is a sketch for n( )ρ  in the super-refracting zone. We have the
continuity constraints n r n r n r n rd d u u1 2 2 3( ) = ( ) ( ) = ( ),  . If we now apply the

wave theory version of the Abel transform in Eq. (6.4-15) to the Fourier
observation function F ων[ ], we obtain
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If we replace W( , )*ρ ρ  by the Dirac delta function, Eq. (6.4-20) becomes
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For spectral numbers lying in the region ρ ν ρu d≤ ≤ , only the combination
N N N1 2 3( ) ( ) ( )* * *ρ ρ ρ− +  is recoverable with this approach.
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6.4.2 Improving the Accuracy of G†( )ν

One can refine the approximation in Eq. (5.7-27) for G†( )ν  by forcing
G[ , ]ρ ν  to align with the exact form for the phase delay in an Airy layer. Per

the discussion concerning Eqs. (5.7-24) and (5.7-25), ϑ ρl
− ( )  gives the phase

delay of the l th  spectral coefficient al
− ( )ρ  for an incoming wave in an Airy

layer. One aligns G[ , ]ρ ν  with ϑ ρl
− ( )  at a radial distance ρ  where G[ , ]ρ ν  is

still accurate. The form for ϑ ρl
− ( )  is given by

ϑ ρl
y

y

y

y
− − −= 






 −







 +( ) tan

Bi[ ˜]
Ai[ ˜]

tan
Bi[ ˆ]
Ai[ ˆ]

constant1 1m (6.4-22)

where ỹ  is defined in Eq. (5.7-18) for an Airy layer, and ˜ / ˆ | | /y y = − −1 2 3β . The
top sign in Eq. (6.4-22) applies to a super-refracting medium where β >1; the
bottom sign applies when β <1. One can readily show that the asymptotic

forms for ϑ ρl
− ( )  and G[ , ]ρ ν  for negative values of ŷ  are identical in an Airy

layer. See Fig. 5-7. For decreasing ρ ν< , note that ϑ ρ ϑl l
− −−( ) ( )0  rapidly

approaches zero.
From Eq. (6.4-22) we have
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To align ∂ ρ ν ∂νG[ , ] /  with ∂ϑ ∂νl
− /  in the vicinity of ρ ν=  one sets

∂ ρ ν ∂νG[ , ] /  according to the following schedule
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(6.4-24)

The chosen value of ŷ◊  is a compromise, taking into account on one hand the

impending failure of g y( ˆ)  to provide the correct phase delay for al
− ( )ρ  for

increasing ŷ  near zero, and on the other hand the decreasing accuracy of the
Airy layer approximation to the actual refractivity profile if applied over too

wide an altitude range. Eq. (6.4-23) shows that ∂ ϑ ρ ϑ ∂νl l
− −−( )( ) ( ) /0  also

rapidly approaches zero for decreasing ρ ν< . Thus, we are concerned about the
Airy layer approximation over a relatively narrow altitude range. The Airy
layer approximation should be valid over the altitude range
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~ ˆ− ≤ − ≤ −2K y Kν νρ ν ◊ , about 50 m. Here we have set ŷ◊ = −2 . With this
modified form the derivative of the spectral density function becomes
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The weighting function W( , )*ρ ρ  also is slightly modified. In this regard, note
that the corrective term from the Airy layer in Eq. (6.4-25) approaches zero as
β  approaches zero with increasing impact parameter.

The difference in the two forms for dG d† / ν  in Eqs. (6.4-2) and (6.4-25) is
given by
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To the extent that the Airy layer approximation is valid, this form gives the
error in Eq. (6.4-2) for dG d† / ν . For β = 0 5. , this difference is about 0.1 mrad
at ŷ◊ = −2 ; for β = 2 , it is about 0.2 mrad. The error increases as β →1. The
Airy layer analysis in Section 5.7 fails at β =1, exactly.

With this modification one still ends up with an integration interval over ρ
that is effectively truncated from below at ρ ν ν= − ŷ K◊  instead of at

ρ ν ν= − ˆ†y K . A super-refractivity zone still yields three separate integration

sections for dG d†( ) /ν ν  when the spectral number lies in the super-refractivity
zone kn r r kn r ru u d d( ) < < ( )ν ; one section above r ru= , one below r ru=  down

to r rd= , and one below r rd=  down to the turning point. See also the
discussion in Section 5.8 on comparison of the wave equation solutions in a
super-refracting medium.
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6.4.3 Resolution Issues

One could infer from Eq. (6.4-15) that away from a super-refracting region
the resolution with which n( )ρ  may be recovered is limited only by the SNR
measurement errors present in the Fourier transform quantity F[ ]ω . But there
are a number of implicit assumptions embedded in Eq. (6.4-15), not the least of
which are the assumptions of spherical symmetry and error-free ionosphere
effects. These and other resolution-limiting factors have been discussed in
[8, 9]. Departures from spherical symmetry arise in two forms: a first part,
largely deterministic, is due to departures of the geopotential of the Earth from
spherical symmetry, the oblateness being the principal term. The
latitude-dependent Earth flattening term is factored into the spectral formulation
presented here by a small adjustment to the value of ro  and to the satellite
coordinates. The second part is due to imperfect a priori knowledge of the
topography of any given surface of constant refractivity. Along-track water
vapor variability, for example. Another contributor is the geostrophic effect
from winds aloft on a surface of constant pressure. Ad hoc calibrations could be
used to correct for these usually small effects for each occultation, using some
local model from ECMWF, for example; not an impossible task, but surely a
tedious one. In a thin phase screen model these adjustments are equivalent to
adjusting D, the limb distance, by an amount δD. It can be shown [8, 9] that an
uncertainty or error δD in the adopted value of D degrades the resolution ∆h ,
in the screen and that δ ( ) /∆h oF  is at least as large as 0 45 1 2. ( / ) /δD D , where
Fo  is the vertical diameter of the free space first Fresnel zone, about 1.5 km.
Thus, a 1% error in D maps into a limiting vertical resolution that is about 5%
of Fo ; a 4% error maps into about 10%, and so on. With respect to the local

Fresnel limit these percentages would be greater by the factor ζ −1 2/  because of
defocusing. In other words, the limiting resolution is quite sensitive to this type
of error.

Similar conclusions follow for other resolution-limiting factors. The
horizontal resolution is limited by the vertical resolution (see Eq. (2.2-10)). But
the vertical resolution is limited in effect by the horizontal resolution, as just
discussed. Equating these two expressions containing δD yields

δ
ζ
β

D ≈
−







90

1 2

1

3

( )
 km (6.4-27)

This gives a minimum horizontal resolution of about 50 km where the
defocusing is 1/10 and β = 0 2. , and about 100 km where the defocusing is 1.
This limiting horizontal resolution yields a limiting vertical resolution that is
15–20% of the local Fresnel diameter. That the Fresnel limit on vertical
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resolution can be substantially surpassed using scalar diffraction theory
techniques (30–100 m) has already been demonstrated [8, 10–12], but a
realistic limit is yet to be established.

Another consideration is the cross-track and along-track drifts of the
tangency point during its descent or ascent. The velocity vector of the tangency
point of an occultation is rarely exactly vertical in the upper atmosphere; it is
canted off-vertical depending on the orbit geometry of the satellites. The
cross-track velocity of the tangency point is proportional to the tangent of this
off-vertical angle. Moreover, the vertical component of the tangency point
velocity vector slows because of defocusing. But, the cross-track component of
the drift is not appreciably slowed and the along-track component accelerates
with depth, approaching the rate −ρ θ*

˜ /d dtL  in strong defocusing. These
factors result in a progressively more shallow descent ratio with depth for the
tangency point. In other words, the horizontal displacement of the tangency
point during an occultation is a significant factor in resolution questions. Of
course, in a 4DVAR context these resolution issues should be addressed in
terms of the information content already extant in the 4DVAR system.

6.5 Summary

This section outlines one spectral technique based on wave theory for
recovering the refractivity profile N( )ρ  from the spectral derivative of the
Fourier transform of the received amplitude and stopped phase measurements
made by the LEO over time. Coincidentally the bending angle profile α νL ( )  is
recovered. Spectral techniques in general facilitate recovery of bending angles
and refractivity fundamentally because of their ability to uniquely sort received
rays according to their excess Doppler, or impact parameter values in a
spherical symmetric medium. Spectral techniques seem essential when adverse
signal conditions prevail because of the concurrent reception of multiple rays.
Spectral techniques also are efficacious, but perhaps not essential if a third
order ray theory is used, in near-caustic situations where the validity of second
order geometric optics breaks down.

Because of the close correspondence noted in Table 5-1 between the phase
delay spectral density function 2G†( )ν  evaluated at its stationary value in
spectral number and the scalar diffraction/thin screen phase function ϕ ρ( )*

discussed in Chapter 2, one need not start from wave theory as the framework
for obtaining these spectral results. We noted in Section 5.10 that the phase
delay spectral density function G†( )ν  from wave theory and the thin screen
phase function ϕ( )h  are related by

− = = ⇔
∞ ∞

∫ ∫2 2G d d†( ) ˙ ˜ ( , ) ( ) ( )Lν α ν ν ν α ν ν ϕ ν
ν ν

(6.5-1)
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The analog of ΨLo  in the thin screen is Φ h h, LG( ) , the Fresnel phase function

given in Eq. (2.5-1). It follows that essentially the same form given in
Eq. (6.4-5) would come from the scalar diffraction integral in a thin phase
screen model, provide that the screen is so constructed that there is a one-to-one
relationship between h and the impact parameter. Therefore, the wave-theoretic
Fourier approach followed here in Chapter 6 to recover the refractivity profile
can be converted into a thin screen Fourier approach by replacing −2G†( )ν  by
ϕ ρ( )*  and its derivative 2dG d†( ) /ν ν  by −d dϕ ρ ρ( ) /* *, that is, by α ρL ( )* .
One also can start from a thin phase screen model, whose surface is defined by
the impact parameter, and use scalar diffraction theory to obtain essentially the
same results. This offers an easier approach.

Finally, an intriguing prospect for future in-receiver signal processing
operations in support of limb sounding, is the incorporation of advanced
processing techniques, such as essentially real-time Fourier transform
algorithms. With current POD information a smart receiver not only could
power through adverse signal episodes and perform backward reconstruction, it
also could report bending angles for multiple rays and refractivity profiles
directly, along with essential statistics, basic phase and amplitude data, and
other housekeeping information.

One should not underestimate the potential cost savings of an in-receiver
automated system using the GPS, especially in adverse signal conditions. For
an analogy one need look no further than the navigation of a typical LEO with
an on-board GPS receiver. Here one can find highly automated processes
resulting in centimeter-level orbit accuracy. Once operational, the workforce
required to routinely maintain and use this capability is an order of magnitude
smaller than that required for most ground-based tracking systems [13].
Investment now in the necessary R&D to enable future automated in-receiver
operations for GPS-based limb-sounding would seem to be a wise
programmatic option. In the future other GNSS programs besides the GPS will
become operational. Use of these systems also should be incorporated in future
flight receiver designs.
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Figure 6-1.  Hypothetical bending angle at the LEO for a layer of
higher refractivity embedded in dry air near sea level. Figure 6-7
shows the recovered refractivity profile for this water vapor layer.

Figure 6-2.  Impact parameter diagram for the refractive bending
angle profile shown in Figure 6-1.

Figure 6-3.  Amplitude of the field at the LEO from the bending angle
profile given in Figure 6-1.

Figure 6-4.  Phase of the complete field at the LEO minus the phase of
the main ray (m) resulting from the Figure 6-1 bending angle profile.

Figure 6-5.  Blow-up of Figures 6-3 and 6-4 at θ θρL
− ≈

o
2 1. , showing

the burst of phase acceleration at θ θρL
− =

o
2 12.  resulting from near-

complete cancellation of the field by opposing caustic rays.

Figure 6-6.  Multipath with single ray paradigm.

Figure 6-7.  Error in recovered refractivity ˆ ( )*N ρ  as a result of
ignoring the dashed sections of the (m) and (a) rays in Figure 6-6.

Figure 6-8.  Spherical geometry for non-coplanar LEO and GPS orbits.
GPS satellite located infinitely afar along the negative z-axis.

Figure 6-9.  Obliquity factor d d˜ /θ θ
L L

 and I / ε  versus LEO orbit plane
inclination angle I.

Figure 6-10.  Weighting function W( , )*ρ ρ  in the wave theory analog of
the Abel transform.

Figure 6-11.  Gradient of n r( )near a super-refracting medium.

Figure 6-12.  Ray geometry for a super-refracting spherical layer.

Figure 6-13(L).  Impact parameter curve in a super-refracting zone.
Figure 6-14(R).  Profile for n  versus ρ  in a super-refracting zone.
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Figure 6-13(L). Figure 6-14(R).
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